banner



Grade 12 Mathematics Question Papers And Memos 2018 Pdf

MATHEMATICS PAPER 2
GRADE 12
NATIONAL SENIOR CERTIFICATE
JUNE 2018
MEMORANDUM

NOTE:

  • If a candidate answers a question TWICE, only mark the FIRST attempt.
  • If a candidate has crossed out an attempt of a question and not redone the question, mark the crossed out version.
  • Consistent accuracy applies in ALL aspects of the marking guideline.
  • Assuming answers/ values in order to solve a problem is NOT acceptable.
GEOMETRY
 S A mark for a correct statement.
(A statement mark is independent of a reason.)
 R A mark for a correct reason.
(A reason mark may only be awarded if the statement is correct.)
 S/R Award a mark if statement and reason are both correct.


QUESTION 1

1.1 1
Answer only full marks
619
41,27
(2)
1.2 σ = 10,63 Answer (2)
1.3 41,27 10,63 41,27 10,63
30,64 51,90
∴ 8 learners
both c.vs
 notation
 8 learners
(3)
1.4 Q1 29
Q3 49
∴ Semi - IQR/IKW 49 - 29
                            2
= 10
 Q1
 Q3
 answer(3)
[10]

QUESTION 2

2.1

56 + 2 y = 64
2 y = 8 Answer only 1 mark
y = 4

correct equation
y-value
(2)

2.2

Time (in minutes)

Frequency

Cumulative frequency

8, 12 and 28
43, 60 and 64
(2)

5 ≤t <10

3

3

10 ≤ t < 15

5

8

15 ≤ t < 20

4

12

20 ≤ t < 25

16

28

25 ≤ t < 30

15

43

30 ≤ t < 35

17

60

35 ≤ t < 40

4

64

2.3 2 grounding
plotting against the upper limit
shape
(3)
2.4 Number of learners= 64 - 54 = 10
Accept[9 -11]
method
54
answer
(3)
[10]

QUESTION 3

3

3.1

x + py = p
y = - x + 1
        p
∴ A(0;1)

y-subject of formula
coordinates of A
(2)

3.2

OA = 1

∴ OC = 4(1) = 4
∴ C (4; 0)
mAC =- 1  =1 - 0
            p0 - 4
p = 4

OC
- 1 =1 - 0
        p 0 - 4
✓ simplification
p-value
(4)

3.3

m EB = 4    EB ⊥ AC
y = 4x - 7½

m EB = 4
equation
(2)

3.4

- x + 1 = 4x - 7½
  4
-x + 4 = 16x - 30
17x = 34
x = 2
y = ½

equating
simplification
x-value
y-value

(4)

3.5

4x - 7½ = 0
4x = 15
         2
x =15
       8
4

y = 0
x-value
3.6 5 substitution
BF

BC
substitution
answer

substitution
BF

OF
substitution
answer
(5)

3.7

r =17
     16

answer
(1)
3.8 6

r 2
equation
(2)

[22]

QUESTION 4

7

4.1

x 2 + 6x + 9 + y 2 - 8 y + 16 = -5 + 9 + 16
(x + 3)2  + (y - 4)2   = 26
∴ M(- 3; 4)

completing the square
x-value
y-value
(3)

4.2

r = √26

answer
(1)

4.3

m AS = 5    [SA ⊥ QB]
y - 4 = 5(x + 3)
y = 5x + 19

m AS = 5
subst.. m AS &(- 3; 4)
equation
(3)

4.4

x 2 + 6x + 9 + (5x + 19 - 4)2   = 26
x 2 + 6x + 9 + 25x 2 + 150x + 225 - 26 = 0
26x 2 + 156x + 208 = 0
x 2 + 6x + 8 = 0
(x + 4)(x + 2) = 0
x = -4 or  x s -2
∴ y = 5(-4) + 19
= -1
Q(- 4; - 1)

substitution
simplification

standard form
factors
choosing correct
y-value
(6)

4.5

-1 = - 1/5 (- 4)+ k
∴ k = - 9/5

substitute (- 4; -1)
answer
(2)

4.6

tanθ =- 1/5
∴ θ = 1690
OQP = 110 [∠s on a str line]
∴ OQP = ORC
∴ RCPQisa cyclic quad [converse∠s same seg]

tanθ =- 1/5

size of θ
size of OQP
R

(4)
[19]

QUESTION 5

5.1.1

8 sin 270 = t /2
x =  √4 - t 2
2 sin 270 cos 270
substitution
(4)

5.1.2

tan 5130.cos 270 = (- tan 270) cos 270
= - sin 27º .cos 270
     cos 270
= - t /2

(- tan 270 )
- sin 270
         cos 270
- t /2

5.1.3

cos 870 = cos(600 + 270 )
= cos 600.cos 270 - sin 600.sin 270
= ½ . √4 - t 2 - √3 . t /2
            2          2
= √4 - t 2 - t 3
            4

✓    600 + 270
expansion
subst 4 - t 2 & t /2
                    2

subst. ½ & 3/2

5.2

        sin(- 2a )cos(900 + a )
sin(- a + 3600 ).cos(- a -1800 )

=(- sin 2 a )(- sin a )
     (sin a )(- cos a )

= -2 sin a cos a
           cos a
= -2 sin a

(- sin 2a )
(- sina )
sina
(- cosa )
2 sina cosa
- 2sina
(6)

5.3

9 sin2 x - 4 cos2 x = 0
(3sin x - 2 cos x)(3sin x + 2 cos x) = 0
∴ 3sin x =± 2 cos x
tan x 2
              3
x = 33, 690 +1800.k orx = 146, 310 +1800.k k ∈Z

factors
both equations
tan x = ± 2
                       3
both 33,690 &146,310 /- 33,690
1800.k & k ∈Z(5)

[22]

QUESTION 6

6.1

Amplitude= 2

✓ answer(1)

6.2

1 ≤y ≤ 5

min & max
✓ notation(2)

6.3

9

both x- intercepts - 300 &1500
max TP & y- intercept
shape (3)

6.4

- 300 < x < 00

both c.v.s
✓ notation(2)

6.5

h(x) = sin(x + 900) - 2
= cos x - 2

✓✓ sin(x + 900) - 2
cos x(3)

[11]

QUESTION 7
10

7.1

Aˆ = 900 - 2θ

answer(1)

7.2

sinθ = DB
           DC

answer
(1)

7.3

DC = DB
         sin θ

and AD = 2DB = 2DB

        DC  = AD  in ΔADC
sin(900 - 2θ )    sin θ

  DB
sin θ =  2DB
cos 2θ    sin θ

       DB   =2DB
sin θ.cos 2θ     sin θ

DB.sin θ = 2DB.sin θ.cos 2θ
2 cos 2θ = 1
2 cos 2θ - 1 = 0

AD = 2DB
sine rule ∆ADC
subst. in sine rule

cos2θ
equation
(5)

[7]


QUESTION 8

8.1

Perpendicular to the chord

answer
(1)

8.2

11

8.2.1

OM = 2x + 3 - 3
             2
OR
OM =2x - 3
             2

answer
OR
answer
(1)

8.2.2

12

susbt. in Pyth
simplification
standard form linear equation
x-value (4)

 8.2.3

DM = 12
DQ = √122 + 62
= √180
= 6√5

DM
subst. in Pyth
answer
(3)

[9]


QUESTION 9

13

9.1

Aˆ  = x[ ∠ at centre = 2∠at circumf.]

S ✓R

Cˆ 2  = x[ ∠s opp.=sides]

S ✓R

Bˆ1  = x[ tan chord theorem]

S ✓R

Tˆ = x [corresp.∠s, : TF II BC]

S ✓R

(8)

9.2

Tˆ  = Aˆ = x
∴ ATBE is a cyclic quad [ converse ∠s same segment]

S
R

(2)

[10]


QUESTION 10
14

10.1

Contruction:Join BN and height from N ⊥ AM and CM and height from M ⊥ AN
Area ΔAMN =½ x AM x h   [same height]
Area ΔBMN   ½ x BM x h

= AM
   BM

Area ΔAMN =½ x AN x k   [same height]
Area ΔCMN   ½ x NC x k

= AN
   NC

Area ΔBMN Area ΔCMN  [same height, same base MN||BC]

= AM = AN
   BM    NC

constr
 S R
 S
 R
(5)
10.2.1

15
ND
= 2 [given]
 x 1
ND = 2xand
NE =2  [prop theorem DE II KM or] line drawn to oneside of a Δ
 y      1

∴ NE = 2y
KM2 = KN2 + MN2 [Pyth theorem]
= (3x)2  + (3y)2
= 9x 2 + 9 y 2

S ✓R
subst in Pyth theo
simplification(4)

10.2.2

DM2 = DN2 + M N2  [Pyth]
= (2x)2 + (3y)2
KE2 = KN2 + NE2   [Pyth]
= (3x)2 + (2 y)2
DM2 + KE2 = 4x 2 + 9 y 2 + 9x 2 + 4 y 2
= 13(x 2 + y 2 )
DM2 + KE 2 =13(x 2 + y 2 )
    KM2            9(x 2 + y 2 )
=13
    9

subst in Pyth
subst in Pyth
value of DM2 + KE2
 13(x 2 + y 2 )
 9(x 2 + y 2 ) ✓

(4)

[13]


QUESTION11
16

11.1

A1 = B1 [alt ∠s, AC II DB]
A3 = B1 [tan chord]
∴ A1 = A3
T2= ACB [ext ∠of a cyclic quad]
D2 = B2 [3rd ∠s]

S/R
✓S✓R
✓S✓R
✓S

OR
A1  = B1 [alt 3s, AC || DB]
A3  = B1 [tan chord]
∴ A1  = A3
T2  = ACB [ext ∠of a cyclic quad]
∴ ΔABC|||ΔADT [∠∠∠]

OR
✓ S/R
✓S
✓S ✓R
✓R ✓R
(6)

11.2

4  = Tˆ1           [vert opp∠s]
1  = Tˆ4      [∠sin same seg]
A1 = Aˆ3       [proven]
∴ T1  = A3
∴ PT is a tangent to circle ADT[converse tan chord]

S/R
S   ✓R
✓R
(4)

11.3

3  = Tˆ1     [proven]
Pˆ = Pˆ    [common]
PTA = Dˆ1  [3rd ∠s]
Δ APT|||Δ TPD   [∠∠∠]

✓S
✓S
✓R

OR
3 = Tˆ1  [proven]
Pˆ= Pˆ    [common]
PTA = D1 [3rd ∠s]

✓S
✓S
✓S
(3)
11.4

AP = PT       [||| Δs]
TP    PD
AP.PD = PT2
AP(AP - AD) = PT2
AP(AP -2/3AP) = PT2
AP. AP = PT2
       3
AP2 = 3PT2

S/R
simplification
PD i.t.o AP and AD
subst in AD
(4)

[17]

TOTAL:150

Grade 12 Mathematics Question Papers And Memos 2018 Pdf

Source: https://www.elimuza.com/grade-12/item/987-grade-12-mathematics-paper-2-memorandum

Posted by: powellagar1989.blogspot.com

0 Response to "Grade 12 Mathematics Question Papers And Memos 2018 Pdf"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel